Basic Mathematics


## The Chain Rule

R Horan \& M Lavelle

The aim of this package is to provide a short self assessment programme for students who want to learn how to use the chain rule of differentiation.

Copyright © 2004 rhoran@plymouth.ac.uk, mlavelle@plymouth.ac.uk
Last Revision Date: April 20, 2004
Version 1.0

## Table of Contents

1. Basic Results
2. The Chain Rule
3. The Chain Rule for Powers
4. Final Quiz

Solutions to Exercises
Solutions to Quizzes

## 1. Basic Results

Differentiation is a very powerful mathematical tool. This package reviews the chain rule which enables us to calculate the derivatives of functions of functions, such as $\sin \left(x^{3}\right)$, and also of powers of functions, such as $\left(5 x^{2}-3 x\right)^{17}$. The rule is given without any proof. It is convenient to list here the derivatives of some simple functions:

| $y$ | $a x^{n}$ | $\sin (a x)$ | $\cos (a x)$ | $\mathrm{e}^{a x}$ | $\ln (x)$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\frac{d y}{d x}$ | $n a x^{n-1}$ | $a \cos (a x)$ | $-a \sin (a x)$ | $a \mathrm{e}^{a x}$ | $\frac{1}{x}$ |

Also recall the Sum Rule:

$$
\frac{d}{d x}(u+v)=\frac{d u}{d x}+\frac{d v}{d x}
$$

This simply states that the derivative of the sum of two (or more) functions is given by the sum of their derivatives.

Section 1: Basic Results

It should also be recalled that derivatives commute with constants:

$$
\text { i.e., if } \quad y=a f(x), \quad \text { then } \quad \frac{d y}{d x}=a \frac{d f}{d x}
$$

where $a$ is any constant. Here are some chances to practise.

Exercise 1. Differentiate the following with respect to $x$ using the above rules (click on the green letters for the solutions).
(a)
$y=\sqrt{x}$
(b)
$y=4 \cos (3 x)$
(c) $y=\ln \left(x^{3}\right)$
(d)
$y=3 x^{4}-4 x^{3}$

Quiz Use the properties of powers to find the derivative of $y=\sqrt{w^{\frac{3}{4}}}$ with respect to $w$.
(a) $\frac{3}{8} w^{-5 / 8}$
(b) $\frac{3}{4} \sqrt{w^{-1 / 4}}$
(c) $\frac{3}{8} w^{-1 / 4}$
(d) $\frac{1}{2} w^{-3 / 8}$

## 2. The Chain Rule

The chain rule makes it possible to differentiate functions of functions, e.g., if $y$ is a function of $u$ (i.e., $y=f(u))$ and $u$ is a function of $x$ (i.e., $u=g(x))$ then the chain rule states:

$$
\text { if } y=f(u), \quad \text { then } \quad \frac{d y}{d x}=\frac{d y}{d u} \times \frac{d u}{d x}
$$

Example 1 Consider $y=\sin \left(x^{2}\right)$. This can be viewed as $y=\sin (u)$ with $u=x^{2}$. Therefore we have

$$
\frac{d y}{d u}=\cos (u) \quad \text { and } \quad \frac{d u}{d x}=2 x
$$

Thus the chain rule can be used to differentiate y with respect to $x$ as follows:

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{d y}{d u} \times \frac{d u}{d x} \\
& =\cos (u) \times(2 x) \\
& =2 x \cos \left(x^{2}\right), \quad \text { since } u=x^{2}
\end{aligned}
$$

The key to using the chain rule is to choose $u$ appropriately, so that you are able to calculate both of the derivatives $\frac{d y}{d u}$ and $\frac{d u}{d x}$. These results can then be substituted into the chain rule to give the desired result $\frac{d y}{d x}$.
Quiz To differentiate $y=3 \sqrt{x^{3}+3 x}$ with respect to $x$, what would be a good choice of $u$ ?
(a) $3 x$
(b) $x^{3}$
(c) $x^{3}+3 x$
(d) $\sqrt{x^{3}+3 x}$

Exercise 2. Differentiate the functions $y$ below using the chain rule with the suggested $u$ (click on the green letters for the solutions).
(a) $y=\ln \left(x^{7}+x\right), \quad u=x^{7}+x$
(b) $y=\sin (\sqrt{x}), \quad u=x^{\frac{1}{2}}$
(c) $y=3 \mathrm{e}^{x^{3}}, \quad u=x^{3}$
(d) $y=\cos (\ln (x)), \quad u=\ln (x)$

Exercise 3. Use the chain rule to differentiate the following functions with respect to $x$ (click on the green letters for the solutions).
(a) $y=\sin \left(x^{2}\right)$
(b) $\quad y=\cos \left(x^{3}-2 x\right)$
(c) $y=2 \sqrt{x^{2}-1}$
(d) $y=4 \mathrm{e}^{2 x^{3}}+2$

Quiz Which of the following is the derivative of $y=2 \sin (3 \cos (4 t))$ with respect to $t$ ?
(a) $6 \cos (3 \cos (4 t))$
(b) $6 \cos (12 \sin (4 t))$
(c) $\quad-24 \sin (4 t) \cos (3 \cos (4 t))$
(d) $12 \sin (4 t) \cos (3 \cos (4 t))$

## 3. The Chain Rule for Powers

The chain rule for powers tells us how to differentiate a function raised to a power. It states:

$$
\text { if } \quad y=(f(x))^{n}, \quad \text { then } \quad \frac{d y}{d x}=n f^{\prime}(x)(f(x))^{n-1}
$$

where $f^{\prime}(x)$ is the derivative of $f(x)$ with respect to $x$. This rule is obtained from the chain rule by choosing $u=f(x)$ above.

Proof: If $y=(f(x))^{n}$, let $u=f(x)$, so $y=u^{n}$. From the chain rule:

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{d y}{d u} \times \frac{d u}{d x} \\
& =n u^{n-1} f^{\prime}(x)=n(f(x))^{n-1} \times f^{\prime}(x) \\
& =n f^{\prime}(x)(f(x))^{n-1}
\end{aligned}
$$

This special case of the chain rule is often extremely useful.

Example 2 Let $y=\left(\mathrm{e}^{x}\right)^{6}$. From the chain rule for powers and writing $y=(f(x))^{6}$ with $f(x)=\mathrm{e}^{x}$ which also means $f^{\prime}(x)=\mathrm{e}^{x}$, we get:

$$
\begin{aligned}
\frac{d y}{d x} & =6 f^{\prime}(x)(f(x))^{6-1} \\
& =6 \mathrm{e}^{x}\left(\mathrm{e}^{x}\right)^{5} \\
& =6 \mathrm{e}^{x} \mathrm{e}^{5 x}=6 \mathrm{e}^{6 x}
\end{aligned}
$$

This result can be checked since, from the properties of powers, we can rewrite $y=\mathrm{e}^{6 x}$.

Exercise 4. Use the chain rule for powers to differentiate the following functions with respect to $x$ (click on the green letters for the solutions).
(a) $y=\sin ^{5}(x)$
(b) $y=\left(x^{3}-2 x\right)^{3}$
(c) $y=\sqrt[3]{x^{2}+1}$
(d) $\quad y=5(\sin (x)+\cos (x))^{4}$

Finally here are two quizzes:
Quiz Select the derivative $h^{\prime}(x)$ for the function $h(x)=\sqrt[3]{x^{3}+3 x}$ from the choices below:
(a) $\frac{-3\left(x^{2}+1\right)}{\left(x^{3}+3 x\right)^{\frac{2}{3}}}$
(b) $\frac{3 x^{2}+3 x}{\left(x^{3}+3 x\right)^{\frac{2}{3}}}$
(c) $\frac{x^{2}+1}{\left(x^{3}+3 x\right)^{\frac{2}{3}}}$
(d) $\frac{3}{\left(x^{3}+3 x\right)^{\frac{1}{2}}}$

Quiz Select the derivative $g^{\prime}(w)$ of $g(w)=\sin ^{4}(w)+\sin \left(w^{4}\right)$ from the choices below:
(a) $4 \cos (w) \sin ^{3}(w)+4 w^{3} \cos \left(w^{4}\right)$
(b) $4 \cos ^{3}(w)+4 w^{3} \cos \left(w^{4}\right)$
(c) $4 \sin ^{3}(w) \cos (w)-4 w^{3} \cos \left(w^{4}\right)$
(d) $-4 \sin ^{3}(w)+4 w^{3} \sin \left(w^{4}\right)$

## 4. Final Quiz

Begin Quiz Choose the solutions from the options given.

1. What is the derivative with respect to $t$ of $y=2 \mathrm{e}^{-2 t^{2}}$ ?
(a) $-8 t \mathrm{e}^{-2 t^{2}}$
(b) $2 \mathrm{e}^{-4 t}$
(c) $-4 \mathrm{e}^{-2 t^{2}}$
(d) $8 t \mathrm{e}^{t^{2}}$
2. What is the derivative with respect to $x$ of $y=\ln \left(x^{3}+3\right)$ ?
(a) $\frac{1}{x^{3}+3}$
(b) $\frac{1}{3 x^{2}}$
(c) $\frac{3 x^{2}}{x^{3}+3}$
(d) $\frac{3 x^{2}+3}{x^{3}+3}$
3. Find the derivative of $y=\left(w^{33}+1\right)^{\frac{1}{33}}$ with respect to $w$
(a) $\left(w^{33}+1\right)^{-\frac{32}{33}}$
(b) $w^{32}\left(33 w^{32}\right)^{-\frac{32}{33}}$
(c) $33 w^{32}\left(w^{33}+1\right)^{-\frac{32}{33}}$
(d) $w^{32}\left(w^{33}+1\right)^{-\frac{32}{33}}$
4. Select below the derivative of $y=4 \sqrt{\sin (a x)}$ with respect to $x$.
(a) $2 a \cos (a x) / \sqrt{(\sin (a x))}$
(b) $4 a \cos (a x) / \sqrt{(\sin (a x))}$
(c) $2 a / \sqrt{(\sin (a x))}$
(d) $-2 a \cos (a x) / \sqrt{(\cos (a x))}$

End Quiz Score:
Correct

## Solutions to Exercises

Exercise 1(a) If $y=\sqrt{x}$, then $y=x^{\frac{1}{2}}$ (see the package on powers). Its derivative with respect to $x$ is then found with the help of the rule that

$$
\frac{d}{d x}\left(a x^{n}\right)=n a x^{n-1}
$$

This yields

$$
\begin{aligned}
\frac{d}{d x}\left(x^{\frac{1}{2}}\right) & =\frac{1}{2} \times x^{\frac{1}{2}-1} \\
& =\frac{1}{2} x^{-\frac{1}{2}} \\
& =\frac{1}{2 \sqrt{x}}
\end{aligned}
$$

Click on the green square to return

Exercise 1(b) To differentiate $y=4 \cos (3 x)$ with respect to $x$ we take the derivative through the constant 4 . We also use the rule

$$
\frac{d}{d x}(\sin (a x))=a \cos (a x)
$$

In this case with $a=3$. This gives

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{d}{d x}(4 \sin (3 x)) \\
& =4 \frac{d}{d x}(\sin (3 x)) \\
& =4 \times 3 \cos (3 x) \\
& =12 \cos (3 x)
\end{aligned}
$$

Click on the green square to return

Exercise 1(c) To differentiate $\ln \left(x^{3}\right)$ with respect to $x$ we first recall from the package on logarithms that $\ln \left(x^{n}\right)=n \ln (x)$. This and the rule

$$
\frac{d}{d x}(\ln (x))=\frac{1}{x}
$$

This implies

$$
\begin{aligned}
\frac{d}{d x}\left(\ln \left(x^{3}\right)\right) & =\frac{d}{d x}(3 \ln (x)) \\
& =3 \frac{d}{d x}(\ln (x)) \\
& =3 \times \frac{1}{x} \\
& =\frac{3}{x}
\end{aligned}
$$

Click on the green square to return

Exercise 1(d) To differentiate $3 x^{4}-4 x^{3}$ we use the sum rule and the basic result

$$
\frac{d}{d x} x^{n}=n x^{n-1}
$$

This gives

$$
\begin{aligned}
\frac{d}{d x}\left(3 x^{4}-4 x^{3}\right) & =3 \times 4 \times x^{4-1}-4 \times 3 \times x^{3-1} \\
& =12 x^{3}-12 x^{2} \\
& =12 x^{2}(x-1)
\end{aligned}
$$

where in the last step we extracted the common factor $12 x^{2}$.
Click on the green square to return

Exercise 2(a) For $y=\ln \left(x^{7}+x\right)$, choose $u=x^{7}+x$, i.e., we write

$$
y=\ln (u), \quad \text { where } \quad u=x^{7}+x .
$$

We could then differentiate $y$ as follows:

$$
\frac{d y}{d u}=\frac{d}{d u}(\ln (u))=\frac{1}{u}, \quad \text { and } \quad \frac{d u}{d x}=\frac{d}{d x}\left(x^{7}+x\right)=7 x^{6}+1
$$

Substituting these results into the chain rule yields:

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{d y}{d u} \times \frac{d u}{d x} \\
& =\frac{1}{u} \times\left(7 x^{6}+1\right) \\
& =\frac{7 x^{6}+1}{x^{7}+x}
\end{aligned}
$$

since $u=x^{7}+x$.
Click on the green square to return

Exercise 2(b) For $y=\sin (\sqrt{x})$, choose $u=\sqrt{x}$, i.e., we write

$$
y=\sin (u), \quad \text { where } \quad u=\sqrt{x}=x^{\frac{1}{2}} .
$$

We could then differentiate $y$ as follows:

$$
\frac{d y}{d u}=\frac{d}{d u}(\sin (u))=\cos (u), \quad \text { and } \quad \frac{d u}{d x}=\frac{d}{d x}\left(x^{\frac{1}{2}}\right)=\frac{1}{2} x^{-\frac{1}{2}}
$$

These results and the chain rule give:

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{d y}{d u} \times \frac{d u}{d x} \\
& =\cos (u) \times\left(\frac{1}{2} x^{-\frac{1}{2}}\right) \\
& =\frac{1}{2 \sqrt{x}} \cos (\sqrt{x})=\frac{\cos (\sqrt{x})}{2 \sqrt{x}}
\end{aligned}
$$

since $u=\sqrt{x}$.
Click on the green square to return

Exercise 2(c) For $y=3 \mathrm{e}^{x^{3}}$, choose $u=x^{3}$, i.e., we write

$$
y=3 \mathrm{e}^{u}, \quad \text { where } \quad u=x^{3} .
$$

We could then differentiate $y$ as follows:

$$
\frac{d y}{d u}=\frac{d}{d u}\left(3 \mathrm{e}^{u}\right)=3 \mathrm{e}^{u}, \quad \text { and } \quad \frac{d u}{d x}=\frac{d}{d x}\left(x^{3}\right)=3 x^{2} .
$$

These results and the chain rule give:

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{d y}{d u} \times \frac{d u}{d x} \\
& =3 \mathrm{e}^{u} \times\left(3 x^{2}\right) \\
& =9 x^{2} \mathrm{e}^{u} \\
& =9 x^{2} \mathrm{e}^{x^{3}}
\end{aligned}
$$

since $u=x^{3}$.
Click on the green square to return

Exercise 2(d) For $y=\cos (\ln (x))$, choose $u=\ln (x)$, i.e., we write

$$
y=\cos (u), \quad \text { where } \quad u=\ln (x)
$$

We could then differentiate $y$ as follows:

$$
\frac{d y}{d u}=\frac{d}{d u}(\cos (u))=-\sin (u), \quad \text { and } \quad \frac{d u}{d x}=\frac{d}{d x}(\ln (x))=\frac{1}{x} .
$$

These results and the chain rule give:

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{d y}{d u} \times \frac{d u}{d x} \\
& =-\sin (u) \times\left(\frac{1}{x}\right) \\
& =-\frac{\sin (\ln (x))}{x}
\end{aligned}
$$

since $u=\ln (x)$.
Click on the green square to return

Exercise 3(a) For $y=\sin \left(x^{2}\right)$, we define $u=x^{2}$, so that

$$
y=\sin (u), \quad \text { where } \quad u=x^{2} .
$$

We can then differentiate $y$ as follows:

$$
\frac{d y}{d u}=\frac{d}{d u}(\sin (u))=\cos (u), \quad \text { and } \quad \frac{d u}{d x}=\frac{d}{d x} x^{2}=2 x .
$$

Substituting these results into the chain rule implies:

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{d y}{d u} \times \frac{d u}{d x} \\
& =\cos (u) \times(2 x) \\
& =2 x \cos \left(x^{2}\right)
\end{aligned}
$$

since $u=x^{2}$.
Click on the green square to return

Exercise 3(b) For $y=\cos \left(x^{3}-2 x\right)$, we define $u=x^{3}-2 x$, i.e., we write

$$
y=\cos (u), \quad \text { where } \quad u=x^{3}-2 x .
$$

We can then differentiate $y$ as follows:
$\frac{d y}{d u}=\frac{d}{d u}(\cos (u))=-\sin (u), \quad$ and $\quad \frac{d u}{d x}=\frac{d}{d x}\left(x^{3}-2 x\right)=3 x^{2}-2$.
Substituting these results into the chain rule implies:

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{d y}{d u} \times \frac{d u}{d x} \\
& =-\sin (u) \times\left(3 x^{2}-2\right) \\
& =-\left(3 x^{2}-2\right) \sin \left(x^{3}-2 x\right)
\end{aligned}
$$

since $u=x^{3}-2 x$.
Click on the green square to return

Exercise 3(c) For $y=2 \sqrt{x^{2}-1}$, we define $u=x^{2}-1$, i.e., we write

$$
y=2 \sqrt{u}=2 u^{\frac{1}{2}}, \quad \text { where } \quad u=x^{2}-1 .
$$

We can then differentiate $y$ as follows:

$$
\frac{d y}{d u}=\frac{d}{d u}\left(2 u^{\frac{1}{2}}\right)=2 \frac{1}{2} u^{-\frac{1}{2}}=u^{-\frac{1}{2}}, \quad \text { and } \quad \frac{d u}{d x}=\frac{d}{d x}\left(x^{2}-1\right)=2 x .
$$

Substituting these results into the chain rule implies:

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{d y}{d u} \times \frac{d u}{d x} \\
& =u^{-\frac{1}{2}} \times(2 x) \\
& =\frac{2 x}{\sqrt{x^{2}-1}}
\end{aligned}
$$

since $u=x^{2}-1$.
Click on the green square to return

Exercise 3(d) For $y=4 \mathrm{e}^{2 x^{3}}+2$, we define $u=2 x^{3}$, so that

$$
y=4 \mathrm{e}^{u}+2, \quad \text { where } \quad u=2 x^{3} .
$$

We can then differentiate $y$ as follows:

$$
\frac{d y}{d u}=\frac{d}{d u}\left(4 \mathrm{e}^{u}+2\right)=4 \mathrm{e}^{u}, \quad \text { and } \quad \frac{d u}{d x}=\frac{d}{d x}\left(2 x^{3}\right)=6 x^{2} .
$$

Note the use of the sum rule to differentiate $y$ above. Putting these results into the chain rule we get:

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{d y}{d u} \times \frac{d u}{d x} \\
& =4 \mathrm{e}^{u} \times\left(6 x^{2}\right) \\
& =24 x^{2} \mathrm{e}^{2 x^{3}}
\end{aligned}
$$

since $u=2 x^{3}$.
Click on the green square to return

Exercise 4(a) The function $\sin ^{5}(x)$ is another way of writing $(\sin (x))^{5}$ Thus to differentiate it we may use the chain rule for powers:

$$
\frac{d}{d x}\left((f(x))^{n}\right)=n f^{\prime}(x)(f(x))^{n-1}
$$

Here we have $f(x)=\sin (x)$ so that:

$$
f^{\prime}(x)=\frac{d}{d x}(\sin (x))=\cos (x)
$$

so we obtain:

$$
\frac{d y}{d x}=5 f^{5-1}(x) \cos (x)=5 \cos (x) \sin ^{4}(x)
$$

Click on the green square to return

Exercise 4(b) To differentiate $y=\left(x^{3}-2 x\right)^{3}$ we may use the chain rule for powers:

$$
\frac{d}{d x}\left((f(x))^{n}\right)=n f^{\prime}(x)(f(x))^{n-1}
$$

Here we have $f(x)=x^{3}-2 x$ so that:

$$
f^{\prime}(x)=\frac{d}{d x}\left(x^{3}-2 x\right)=3 x^{2}-2
$$

so we obtain:

$$
\frac{d y}{d x}=\left(3 x^{2}-2\right) \times 3 f^{2}(x)=3\left(3 x^{2}-2\right)\left(x^{3}-2 x\right)^{2}
$$

Click on the green square to return

Exercise 4(c) To differentiate $y=\sqrt[3]{x^{2}+1}=\left(x^{2}+1\right)^{\frac{1}{3}}$ we may use the chain rule for powers:

$$
\frac{d}{d x}\left((f(x))^{n}\right)=n f^{\prime}(x)(f(x))^{n-1}
$$

Here we have $f(x)=x^{2}+1$ so that:

$$
f^{\prime}(x)=\frac{d}{d x}\left(x^{2}+1\right)=2 x
$$

so we obtain:

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{1}{3} f^{\frac{1}{3}-1}(x) \times 2 x \\
& =\frac{1}{3} \times 2 x f^{-\frac{2}{3}}(x) \\
& =\frac{2}{3} x\left(x^{2}+1\right)^{-\frac{2}{3}}
\end{aligned}
$$

Click on the green square to return

Exercise 4(d) To differentiate $y=5(\sin (x)+\cos (x))^{4}$ we take the derivative through the factor of 5 at the front and use the chain rule for powers:

$$
\frac{d}{d x}\left((f(x))^{n}\right)=n f^{\prime}(x)(f(x))^{n-1}
$$

Here we have $f(x)=(\sin (x)+\cos (x))$ so that:

$$
f^{\prime}(x)=\frac{d}{d x}(\sin (x)+\cos (x))=\cos (x)-\sin (x)
$$

so we obtain:

$$
\begin{aligned}
\frac{d y}{d x} & =5 \times 4(\cos (x)-\sin (x)) \times f^{4-1}(x) \\
& =20(\cos (x)-\sin (x))(\sin (x)+\cos (x))^{3}
\end{aligned}
$$

Click on the green square to return

## Solutions to Quizzes

Solution to Quiz:
To differentiate $y=\sqrt{w^{\frac{3}{4}}}$ with respect to $w$, we use the properties of powers to rewrite $y=\left(w^{\frac{3}{4}}\right)^{\frac{1}{2}}=w^{\frac{3}{8}}$. From the basic result

$$
\frac{d}{d x} x^{n}=n x^{n-1}
$$

we obtain

$$
\begin{aligned}
\frac{d y}{d w} & =\frac{d}{d w}\left(w^{\frac{3}{8}}\right) \\
& =\frac{3}{8} w^{\frac{3}{8}-1} \\
& =\frac{3}{8} w^{\frac{3}{8}-\frac{8}{8}} \\
& =\frac{3}{8} w^{-\frac{5}{8}}
\end{aligned}
$$

Solution to Quiz: Choosing $u=x^{3}+3 x$ lets us write

$$
y=3 \sqrt{x^{3}+3 x}=3 \sqrt{u}=3 u^{\frac{1}{2}} .
$$

This makes it possible to calculate both $\frac{d y}{d u}=\frac{3}{2} u^{-\frac{1}{2}}$ and $\frac{d u}{d x}=3 x^{2}+3$. These results can be substituted into the chain rule to find

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{d y}{d u} \times \frac{d u}{d x} \\
& =\frac{3}{2} u^{-\frac{1}{2}} \times\left(3 x^{2}+3\right) \\
& =\frac{3}{2}\left(3 x^{2}+3\right) u^{-\frac{1}{2}} \\
& =\frac{9}{2}\left(x^{2}+1\right)\left(x^{3}+3 x\right)^{-\frac{1}{2}}=\frac{9\left(x^{2}+1\right)}{2 \sqrt{x^{3}+3 x}}
\end{aligned}
$$

since $u=x^{3}+3 x$.
If we had picked any of the other suggestions for $u$ we would not have been able to calculate $\frac{d y}{d u}$.

End Quiz

Solution to Quiz: For $y=2 \sin (3 \cos (4 t))$, choose $u=3 \cos (4 t)$, i.e., we write

$$
y=2 \sin (u), \quad \text { where } \quad u=3 \cos (4 t)
$$

To differentiate $y$ with respect to $t$ we need:
$\frac{d y}{d u}=\frac{d}{d u}(2 \sin (u))=2 \cos (u), \quad$ and $\quad \frac{d u}{d t}=\frac{d}{d t}(3 \cos (4 t))=-12 \sin (4 t)$
These results and the chain rule give:

$$
\begin{aligned}
\frac{d y}{d t} & =\frac{d y}{d u} \times \frac{d u}{d t} \\
& =2 \cos (u) \times(-12 \sin (4 t)) \\
& =-2 \times 12 \sin (4 t) \cos (u) \\
& =-24 \sin (4 t) \cos (3 \cos (4 t))
\end{aligned}
$$

since $u=3 \cos (4 t)$.
End Quiz

Solution to Quiz: The chain rule for powers may be used to differentiate $h(x)=\sqrt[3]{x^{3}+3 x}=\left(x^{3}+3 x\right)^{\frac{1}{3}}$ with respect to $x$. Writing $h=f(x)^{\frac{1}{3}}$ with $f(x)=x^{3}+3 x$ (so that $f^{\prime}(x)=3 x^{2}+3$ ) we find that

$$
\begin{aligned}
h^{\prime}(x) & =\frac{1}{3} f^{\frac{1}{3}-1}(x) \times\left(3 x^{2}+3\right) \\
& =\frac{1}{3}\left(3 x^{2}+3\right) f^{-\frac{2}{3}}(x) \\
& =\left(x^{2}+1\right) f^{-\frac{2}{3}}(x) \\
& =\frac{x^{2}+1}{f(x)^{\frac{2}{3}}} \\
& =\frac{x^{2}+1}{\left(x^{3}+3 x\right)^{\frac{2}{3}}}
\end{aligned}
$$

where we used $f(x)=x^{3}+3 x$ in the last step.

Solution to Quiz: To differentiate $g(w)=\sin ^{4}(w)+\sin \left(w^{4}\right)$ with respect to $w$, we differentiate each of the two terms and add our results.
We use the chain rule for powers to differentiate $\sin ^{4}(w)$ with respect to $w$. This gives:

$$
\frac{d}{d w} \sin ^{4}(w)=4 \sin ^{3}(w) \frac{d}{d w} \sin (w)=4 \cos (w) \sin ^{3}(w)
$$

To differentiate $\sin \left(w^{4}\right)$, we write $y=\sin (u)$ where $u=w^{4}$. From the chain rule (using $\frac{d y}{d u}=\cos (u)$ and $\frac{d u}{d w}=4 w^{3}$ ) we obtain

$$
\frac{d}{d w} \sin \left(w^{4}\right)=\frac{d}{d u} \sin (u) \times 4 w^{3}=4 w^{3} \cos \left(w^{4}\right)
$$

Adding these two results gives the final answer:

$$
g^{\prime}(w)=4 \cos (w) \sin ^{3}(w)+4 w^{3} \cos \left(w^{4}\right)
$$

End Quiz

